Tamed spaces – Dirichlet spaces with distribution-valued Ricci bounds

نویسندگان

چکیده

We develop the theory of tamed spaces which are Dirichlet with distribution-valued lower bounds on Ricci curvature and investigate these from an Eulerian point view. To this end we analyze in detail singular perturbations form by a broad class distributions. The distributional bound is then formulated terms integrated version Bochner inequality using perturbed energy generalizing well-known Bakry-Émery curvature-dimension condition. Among other things show equivalence to gradient estimates for heat semigroup Feynman-Kac induced taming distribution as well consequences functional inequalities. give many examples including particular Riemannian manifolds interior singularities boundary behavior. Nous développons la théorie des espaces apprivoisés, c'est à dire de avec bornes inférieures distributionnelles sur courbure Ricci, et nous les étudions d'un vue eulérien. À cette fin, analysons en détail singulières forme par une large classe La borne distributionnelle est ensuite formulée termes d'une intégrée l'inégalité qui utilise d'énergie perturbée généralise condition courbure-dimension Bakry-Emery. Notamment, montrons l'équivalence entre estimations du pour le semi-groupe chaleur induit d'apprivoisement ainsi que conséquences d'inégalités fonctionnelles. donnons aussi plusieurs exemples d'espaces dont particulier variétés riemanniennes singularités internes comportement singulier au bord.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci-flat supertwistor spaces

We show that supertwistor spaces constructed as a Kähler quotient of a hyperkähler cone (HKC) with equal numbers of bosonic and fermionic coordinates are Ricci-flat, and hence, Calabi-Yau. We study deformations of the supertwistor space induced from deformations of the HKC. We also discuss general infinitesimal deformations that preserve Ricci-flatness.

متن کامل

QUANTALE-VALUED GAUGE SPACES

We introduce a quantale-valued generalization of approach spaces in terms of quantale-valued gauges. The resulting category is shown to be topological and to possess an initially dense object. Moreover we show that the category of quantale-valued approach spaces defined recently in terms of quantale-valued closures is a coreflective subcategory of our category and, for certain choices of the qu...

متن کامل

The Libera operator on Dirichlet spaces

In this paper, we consider the boundedness of the Libera operator on Dirichlet spaces in terms of the Schur test. Moreover, we get its point spectrum and norm.

متن کامل

Symmetric symplectic spaces with Ricci-type curvature

We determine the isomorphism classes of symmetric symplectic manifolds of dimension at least 4 which are connected, simply-connected and have a curvature tensor which has only one non-vanishing irreducible component – the Ricci tensor.

متن کامل

Error Bounds for Vector-valued Functions on Metric Spaces

In this paper, we attempt to extend the definition and existing local error bound criteria to vector-valued functions, or more generally, to functions taking values in a normed linear space. Some new primal space derivative-like objects – slopes – are introduced and a classification scheme of error bound criteria is presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2022

ISSN: ['0021-7824', '1776-3371']

DOI: https://doi.org/10.1016/j.matpur.2022.02.002